什么是特征向量和特征值(特征向量怎么求出来的)

什么是特征值和特征向量?

特征值和特征向量是线性代数中的重要概念。

特征向量是指在矩阵变换后仍然保持原方向的向量,这种向量并不一定需要与原来的向量长度相同,但方向必须一致或者相反。换句话说,当一个非零向量经过矩阵作用后,得到的结果仍是与原向量方向一致的新向量,那么这个非零向量就被称为该矩阵的特征向量。

特征值则是在这个变换过程中对应的缩放比例,也就是说,特征值是矩阵作用下将某个特征向量放大或缩小的比例因子。这种缩放比例必须是非零的,因为特征向量本身不能为零。

举个简单的例子,考虑二维平面上的矩阵变换,如果我们将每个点沿着x轴方向移动,并沿着y轴方向缩小一半,那么这个矩阵的特征向量就是垂直于x轴的向量,而其特征值则是0.5。这意味着,所有沿着垂直于x轴的方向的向量在变换后仍然指向原来的方向,但其大小会被缩小0.5倍。

特征值和特征向量在许多领域中都有广泛应用,包括物理、工程、计算机科学等等。在机器学习和数据分析领域,它们常用于矩阵分解和降维等任务中。

特征向量怎么求?

从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。

矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。

通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。

扩展资料

注意事项

1、当在计算中微子振荡概率时发现,特征向量和特征值的几何本质,其实就是空间矢量的旋转和缩放。而中微子的三个(电子,μ子,τ子),就相当于空间中的三个向量之间的变换。

2、用户只需要列一个简单的方程式,特征向量便可迎刃而解。公式表示只需要通过删除原始矩阵的行和列,创建子矩阵。再将子矩阵和原始矩阵的特征值组合在一起,就可以计算原始矩阵的特征向量。

3、传统的求解特征向量思路,是通过计算特征多项式,然后去求解特征值,再求解齐次线性方程组,最终得出特征向量。

最小特征向量是什么

最小特征向量是法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。

曲面法线的法向不具有唯一性,在相反方向的法线也是曲面法线。曲面在三维的边界内可以区分出inward-pointing normal与outer-pointing normal,有助于定义出法线唯一方法。定向曲面的法线通常按照右手定则来确定。

特征向量正交问题

矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值。

线性变换的特征向量是指在变换下方向不变,或者简单地乘以一个缩放因子的非零向量。

特征向量对应的特征值是它所乘的那个缩放因子。

特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。

线性变换的主特征向量是最大特征值对应的特征向量。

<

特征值与特征向量之间有什么关系

一个特征值只能有一个特征向量,非重根;有一个重根,可有两个线性无关的特征向量,也可没有两个线性无关的特征向量,不可能多于两个;如果有两个,则可对角化,如果只有一个,不能对角化;矩阵可对角化的条件:有无数个线性无关的特征向量;不同的特征值,对应线性无关的特征向量;重点分析重根情况,无数重根如果有无数个线性无关的特征向量,也可对角化。

基础解系和特征向量有什么区别

性质不同:特征向量对应的特征值是它所乘的那个缩放因子,特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量。基础解系针对有无数多组解的方程而言,若是齐次线性方程组则应是有效方程的个数少于未知数的个数,若非齐次则应是系数矩阵的秩等于增广矩阵的秩,且都小于未知数的个数。

基础解系是对于方程组而言的,方程组才有所谓的基础解系,就是方程所有解的“基”。特征值向量对于矩阵而言的,特征向量有对应的特征值,如果Ax=ax,则x就是对应于特征值a的特征向量

实对称矩阵的特征向量一定正交吗

实对称矩阵的特征向量一定正交。如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),则称A为实对称矩阵。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

怎么计算特征根 特征向量

特征根:

特征根法也可用于通过数列的递推公式(即差分方程,必须为线性)求通项公式,其本质与微分方程相同。

特征向量:

A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x称为A的对应于特征值λ的特征向量。

式Ax=λx也可写成(A-λE)x=0,并且|λE-A|叫做A的特征多项式。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。

令|A-λE|=0,求出λ值。A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。一旦找到两两互不相同的特征值λ,相应的特征向量可以通过求解方程(A–λI)v=0得到,其中v为待求特征向量,I为单位阵。

当特征值出现重根时,如λ1=λ2,此时,特征向量v1的求解方法为(A-λ1I)v1=0,v2为(A-λ2I)v2=v1,依次递推。

没有实特征值的一个矩阵的例子是顺时针旋转90度。

特征向量正交什么意思

对称阵不同的特征值对应的特征向量是相互正交的。矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。

一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。“特征”一词来自德语的eigen。1904年希尔伯特首先在这个意义下使用了这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词。eigen一词可翻译为”自身的”、“特定于……的”、“有特征的”、或者“个体的”,这显示了特征值对于定义特定的线性变换的重要性。

二阶矩阵特征向量怎么求

求二阶矩阵特征向量公式:Ax=mx。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

特征向量和基础解系有什么关系

特征向量是特征值对应齐次方程组的基础解系,特征值向量对于矩阵而言的,特征向量有对应的特征值,如果Ax=ax,则x就是对应于特征值a的特征向量。而解向量是对于方程组而言的,就是方程组的解,是一个意思。

基础解系是对于方程组而言的,方程组才有所谓的基础解系,就是方程所有解的“基”。对于空间而言的,空间有它的“基”,就是线性无关的几个向量,然后空间中的任何一个向量都能由“基”的线性组合来表示。

如何判断特征向量是否正交

对于实对称矩阵不同特征值的特征向量一定正交,根据向量正交的概念,向量相乘为零,特征向量和特征子空间都有一定意义的唯一性,若一个矩阵没有重特征值,特征向量唯一确定,只要可逆矩阵P的列不正交,D是没有重特征值的对角阵,则特征向量不正交。

版权声明